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S U M M A R Y

Beta2-adrenoreceptor agonists (b2-agonists) are extensively used in the treatment of childhood asthma.

However, there have been concerns regarding their adverse effects and safety. In 2005, the FDA

commissioned a ‘‘Black Box Warning’’ communicating the potential for an increased risk for serious

asthma exacerbations or asthma related deaths, with the regular use of LABAs. In a meta-analysis of

controlled clinical trials, the incidence of severe adverse events appeared to be highest in the 4-11 year

age group. Several mechanisms have been proposed regarding the risk of regular use of b2-agonists, such

as masking patients’ perception of worsening asthma, desensitization and downregulation of the b2-

adrenoreceptor, pro-inflammatory effects of b2-agonists, pharmacogenetic effects of b2-adrenoreceptor

polymorphisms and age related differences in pathophysiology of asthma.

In this paper, we review b2-receptor pharmacology, discuss the concerns regarding treatment with

b2-agonists in childhood asthma, and provide suggestions for clinical pediatric practice in the light of

current literature.

� 2016 Elsevier Ltd. All rights reserved.

EDUCATIONAL AIMS

After reading this review, readers will be able to:

� Discuss the potential risks of treatment of childhood asthma with b2-agonists
� Understand the development of tolerance to b2-agonists
� Discuss potential mechanisms involved in the increase in asthma-related adverse events with regular b2-agonist treatment
� Understand the potential role of b2-adrenoreceptor polymorphisms in response to b2-agonist treatment
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INTRODUCTION

Short acting b2-agonists (SABAs) are the first choice as rescue
medication during acute bronchoconstriction and provide protec-
tion against exercise induced bronchoconstriction (EIB) [1]. SABAs
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activate the b2-adrenoreceptor (b2AR) within 5 minutes and have
a bronchodilator effect of 4-6 h [2]. Long acting b2-agonists (LABAs)
have a longer (12-24 h) bronchodilator effect [2]. Currently, in
clinical guidelines for children, LABAs are recommended as one of
the step-up options for maintenance treatment in combination with
gology, Beatrix Children’s Hospital, University Medical Center Groningen, PO Box

61 4235.

l (G.H. Koppelman), b.j.thio@mst.nl (B.J. Thio).

e by Genotype; b2AR, b2-adrenoreceptor; BHR, bronchial hyperresponsiveness; EIB,

xpiratory volume in 1 sec; ICS, inhaled corticosteroid; LABA, long acting b2-agonist;

tagonist; PKA, protein kinase A; SABA, short acting b2-agonist; SAE, serious adverse

 Polymorphism; SNS, Serevent Nationwide Surveillance.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.prrv.2016.05.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.prrv.2016.05.006&domain=pdf
http://dx.doi.org/10.1016/j.prrv.2016.05.006
mailto:e.t.g.kersten@umcg.nl
mailto:g.h.koppelman@umcg.nl
mailto:b.j.thio@mst.nl
http://www.sciencedirect.com/science/journal/15260542
http://dx.doi.org/10.1016/j.prrv.2016.05.006


E.T.G. Kersten et al. / Paediatric Respiratory Reviews 21 (2017) 80–85 81
inhaled corticosteroids (ICSs) when asthma is not adequately
controlled with ICSs alone [3,4].

In the past 20 years, concerns about the safety of LABAs caused
an ongoing controversy among drug authorities, scientists and
clinicians [5], as meta-analyses indicate a significantly higher risk
of serious adverse events, such as life-threatening asthma
exacerbations [6–11], in adults and children regularly taking
LABAs. Particular concern has arisen about the risk of LABAs in
childhood asthma [10,12].

In this paper, we discuss the concerns regarding treatment with
b2-agonists in childhood asthma, review b2-receptor pharmacol-
ogy, and focus on clinical recommendations for pediatricians in the
light of current literature.

PHARMACOLOGY

The adrenoreceptors are a class of G-protein coupled receptors
that are targeted by catecholamines. The b2AR predominates in
the respiratory tract, where it is widely distributed, not only in
airway smooth muscle cells (with a density of 30.000-40.000
receptors per cell), but also in lung epithelial cells, endothelial cells
and inflammatory cells such as mast cells [2]. The b2AR density
increases more distally throughout the respiratory tract with
highest levels in the small airways and alveolar region [2].

Stimulation of the b2AR in airway smooth muscle cells induces
a signal transduction pathway, resulting in increased intracellular
cyclic-30,50-adenosine monophosphate (cAMP) [2]. cAMP catalyzes
the activation of protein kinase A (PKA), which subsequently leads
to phosphorylation of key regulatory proteins involved in the
control of muscle tone. An increase in cAMP inhibits Ca2+ release
from intracellular stores, reduces Ca2+ entry into the cells, and
enhances sequestration of intracellular Ca2+. The stimulated b2AR
also directly interacts with potassium channels present in the
airway smooth muscle cell membrane, without involving cAMP,
resulting in airway smooth muscle relaxation (Figure 1). Stimula-
tion of the b2AR by b2-agonists stabilizes mast cells, which are
abundantly present in the asthmatic airways, through an increase
in intracellular cAMP [13], inhibiting the release of pre-stored
histamine and the synthesis of new mediators, such as cysteinyl
leukotrienes and prostaglandin D2.

Stimulation of the b2AR on epithelial cells leads to an
increased beat frequency of cilia and may therefore facilitate
mucociliary clearance [14]. Furthermore, b2-agonists inhibit
extravasation of plasma proteins in the airway wall, thereby
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Figure 1. Physiological effects of b2-agonists in the airways.
reducing the airway wall congestion that contributes to airway
obstruction in asthma [14].

b2AR-mediated vasorelaxation, and possibly bronchodilation,
decline with age due to a decrease in affinity for agonists, sub-
optimal receptor signaling and a decline in cAMP production [15].

Prolonged exposure to an agonist desensitizes G-protein-
coupled receptors. In homologous desensitization, within minutes
of binding of a ligand to its receptor, G-protein receptor kinase is
activated. This kinase phosphorylates the carboxyterminal portion
of the G-protein-coupled receptor, which changes the receptor
conformation and leads to decoupling of the receptor from the G-
protein, resulting in receptor subsensitivity. In heterologous
desensitization, that for example happens after allergen challenge
[16], the receptor is phosphorylated by a non-specific kinase that is
activated by binding of a ligand to a different G-protein coupled
receptor.

The phosphorylated receptors are bound by b-arrestin, after
which they are internalized by endocytosis. The internalized
receptors can be recycled to the cell membrane. However, when
exposure to the ligand or agonist continues, the total transit time
for the recycling of receptors increases [2] and part of the receptors
will be degraded in lysosomes. After hours of agonist exposure
there is a net loss of receptors, called downregulation. The
receptors can only be replaced by re-synthesis of new receptors
through transcription of the b2AR-gene [2,14]. Therefore it takes
hours to days to overcome downregulation.

Corticosteroids increase b2AR-gene transcription and regulate
both the number of receptors and the coupling to adenylate
cyclase, reversing b2AR downregulation [2].

CONCERNS WITH REGULAR B2-AGONIST TREATMENT

No large efficacy and safety studies were performed when
SABAs were introduced. Two epidemics of asthma related
mortality, after the marketing of isoproterenol in the 1960s in
the United Kingdom [17] and fenoterol in the 1970s in New
Zealand [18], rose concern about regular SABA treatment. It was
assumed that the relationship between asthma mortality and
isoproterenol (a non-selective b-agonist) resulted from cardiac
toxicity, and that the dose related effect of fenoterol on asthma
mortality [19] reflected increased SABA use due to more severe
asthma. However, a prospective trial by Sears et al. in adolescent
and adult asthmatics (aged 15-64y) in 1990 demonstrated worse
asthma control when fenoterol was used regularly compared to
when it was used as rescue, as-needed therapy [20]. Several
placebo controlled studies have since then compared the effect of
regular treatment with a SABA to as-needed treatment in
asthmatic adults [21]. Overall, there was little evidence to support
regular use of SABAs [21] and SABAs are therefore advised to use
only on an ‘as needed’ basis. Increased use is considered to indicate
a deterioration of asthma control and the need to step-up
treatment.

Since the introduction of LABAs there have been concerns
regarding their adverse effects and safety. Among the first studies
to examine LABA safety were the Serevent Nationwide Surveil-
lance Study (SNS) [22] and Salmeterol Multi-center Asthma
Research Trial (SMART) [23]. The SNS study was a 16-week,
double-blind study in 25,180 subjects aged � 12y that reported a
statistically insignificant increase in the number of asthma-related
deaths in patients treated with salmeterol twice daily compared to
four times daily salbutamol (RR 3.0, 95% CI 0.7–20). The SMART
trial was a 28-week, randomized trial in 26,355 subjects aged �
12y that reported a significantly increased risk for asthma-related
death (RR 4.37, 95% CI 1.25–15.3) and respiratory related death (RR
2.16, 95% CI 1.06-4.41) in patients treated with salmeterol
compared to placebo. On subgroup analysis, this increased risk
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was only found in African-Americans. SMART was not adequately
designed to determine whether or not ICS use affected the
incidence of asthma related deaths, but 9/13 deaths occurred in
patients who did not receive ICS.

These observations led to a ‘‘Black Box Warning’’ by the FDA in
2005 communicating the potential for an increased risk for serious
asthma exacerbations or asthma-related death with the regular
use of LABAs. Subsequently, over a dozen meta-analyses investi-
gating the adverse effects of LABAs in adults and children were
published, providing an equivocal picture [6–11,24–29]. Some of
these meta analyses demonstrated an increased risk of serious
adverse events, such as asthma exacerbations requiring hospitali-
zation, life-threatening exacerbations and asthma-related death
with LABA use compared to placebo [6–11], while others did not
[24–29]. This inconsistency is probably due to differences in
background therapy and heterogeneity in study design and study
populations.

The FDA performed a meta-analysis of controlled clinical trials
comparing the risk of LABA use with no LABA use for different age
categories [10]. They found that the composite outcome of asthma-
related death, intubation, or hospitalization had the highest
incidence in the 4-11y age group (30.4 events per 1000 patient
years, 95% CI 5.7–55.1). Compared to 4-11y old children not on
LABAs the RR was 1.67 (Figure 2). These results were similar for
patients who reported concomitant use of ICSs, though adherence
to ICSs was not checked. In the small subgroup of patients who
were assigned ICSs as study medication and whose adherence was
checked, there did not seem to be an increased risk.

A pediatric meta-analysis in which 82% of patients used ICSs,
reported no significant difference (RR 1.05, 95% CI 0.61-1.83) in
asthma-related hospitalizations in 4-11y old children on formo-
terol compared to no LABA [28]. A 2012 Cochrane analysis on the
safety of formoterol and salmeterol in asthmatic children (aged 4-
17y) concluded that regular LABA/ICS combination therapy is
likely to be less risky than LABA monotherapy [29]. However,
another Cochrane analysis reported a trend towards an increase in
asthma related deaths in adults (OR 3.6, 95% CI 0.79-16.3) and non-
fatal serious adverse events in children (OR 1.62, 95% CI 0.80-3.28)
on formoterol with ICS compared to ICS monotherapy [25].

The important question that remains is whether the benefits of
combination therapy in children outweigh the risks. LABA/ICS
combination therapy is recommended as a third step in asthma
treatment for children >6 years by clinical guidelines [3,4].
Figure 2. Incidence difference (ID) per 1000 patient-years for composite outcome of

asthma-related death, intubation, or hospitalization, according to age for LABA

versus no-LABA therapy.

IncidenceNo LABA = incidence in No LABA group per 1000 patient-years.

Figure adopted from McMahon et al., Pediatrics 2011 [10] with permission.
In adults, the addition of a LABA to an ICS improves pulmonary
function and symptoms, reduces the use of rescue medication and
improves quality of life [30,31]. However, in children the evidence
in favor of LABAs is far less certain, with wide confidence intervals
including both superiority and inferiority of LABA/ICS combination
therapy compared to adding a leukotriene antagonist or doubling
the dose of ICSs [30,31].

It has been postulated that larger trials are necessary to
determine the benefits and risks of LABA/ICS combination therapy.
In 2011, the FDA issued a requirement for all manufacturers of
LABAs to conduct controlled clinical trials to assess the safety of
LABA/ICS combination therapy compared to ICS monotherapy
[32]. Results from these studies in patients aged 4-11 years are
expected in 2017.

POSSIBLE MECHANISMS OF INCREASED ADVERSE EVENTS WITH
REGULAR B2-AGONISTS

Several mechanisms have been proposed to explain the
increase in adverse events with regular b2-agonist treatment:
masking patients’ perception of asthma worsening, desensitization
and downregulation of the b2AR, pro-inflammatory effects and,
finally, pharmacogenetic interactions.

Asthma worsening may be masked, as b2-agonists provide
good acute symptom relief. Patients may rely on them too much,
preventing them from taking sufficient anti-inflammatory treat-
ment, unaware of their underlying disease state and obscuring a
possible worsening of their asthma. Furthermore, patients may
neglect to avoid allergens, and engage in bronchoprovocative
behaviour such as smoking, as they experience no acute symptoms
because of the bronchodilator effect of b2-agonists, causing a more
severe late inflammatory response.

Desensitization and downregulation of the b2AR result in
tolerance to the bronchoprotective and bronchodilator effects of
b2-agonists. A loss of bronchoprotection could make children
more vulnerable to asthma exacerbations in response to allergen,
exercise, airway infections or non-specific stimuli. A loss in the
bronchodilator effect of b2-agonists could result in failure of
rescue SABA treatment during an exacerbation. The enhanced need
for rescue SABAs could lead to even more receptor downregulation
(Figure 3). Theoretically, corticosteroid stimulated transcription of
the b2AR-gene may compensate for receptor downregulation
[33]. Both systemic corticosteroids [34] and a single high dose of
ICS (1600 mg budesonide) [35] have been shown to reverse
bronchodilator tolerance. However, in clinical studies tolerance to
the bronchoprotective effects of b2-agonists developed despite
concomitant treatment with conventional doses of ICSs [36–38].
Figure 3. Schematic representation of vicious circle that could occur with frequent

b2-agonist use.



Figure 4. Changes in asthma-related outcomes in Arg16 homozygous children

treated with fluticasone plus oral montelukast (ML) or salmetorol/fluticasone plus

placebo montelukast (SM). Visits were every 3 months.

Top panel: change in asthma-related school absences.

Middle panel: change in use of salbutamol reliever.

Bottom panel: change in total pediatric asthma quality of life questionnaire score

after 12 months treatment.

Error bars are 95% CI. P values are shown for the comparison between groups after

12 months.

Figure adapted from Lipworth et al. [55] with permission.
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It was postulated that LABAs may induce pro-inflammatory
effects. b2-agonists induce a shift in peripheral blood mononuclear
cells’ cytokines toward a Th2-lymphocyte response [39]. Regular
use of b2-agonists can increase sputum inflammatory cells
[40]. Sustained exposure to b2-agonists increases airway smooth
muscle contractility [41] and augments the effects of broncho-
constrictive mediators [42] and pro-contractile signaling path-
ways. Clinically, these observations do not appear to be relevant, as
a meta-analysis investigating the effect of LABAs on inflammation
in adults or children concluded they did not have a clinically
important anti- or pro-inflammatory effect [43].

B2AR-gene polymorphisms result in changes in the amino acid
sequence of the b2AR, leading to alterations of its properties. It was
hypothesized that rare variants of the b2AR gene could account for
the rare incidence of asthma-related life threatening events in
patients receiving regular b2-agonists. Two single-nucleotide
polymorphisms (SNPs) in specific coding regions, glycine for
arginine at codon 16 and glutamic acid for glutamine at codon 27,
have been more extensively studied since they are relatively
prevalent in Caucasian populations. The minor allele of this SNP
(Arg16) has a reported frequency of approximately 40% in
Caucasians [44]. In vitro, receptors with the homozygous Arg16
genotype show enhanced susceptibility for homologous desensi-
tization and receptor downregulation [45], which could account
for an increase in b2-agonist tolerance in Arg16 homozygotes.

Both retrospective and prospective analyses of data in adults
have demonstrated adverse effects of the Arg16 homozygous
variant on asthma symptoms [46], BHR [47] and exacerbations [48]
after receiving a SABA as regular therapy. In the Beta Adrenergic
Response by Genotype (BARGE) trial the response to 16-weeks
regular albuterol was compared to placebo plus ipratropium
rescue treatment in asthmatic adults in a prospective, genotype-
stratified, cross-over design [46]. In this study, Arg16 homozygotes
did not experience an improvement in peakflow and demonstrated
a deterioration of symptom control during albuterol treatment, in
contrast to Gly16 homozygotes.

Studies searching for the effect of b2AR genotype on the
response to treatment with LABAs have shown conflicting results
which appear to relate to the age of the study group. In adults, a
large retrospective study in 2250 patients (aged �12y) showed no
association between treatment with salmeterol or formoterol and
clinical outcomes after stratification by Arg16Gly genotype [49]. In
the Longacting b2-Adrenergic Response by Genotype (LARGE) trial
the response to 18-weeks twice daily salmeterol (added to ICS) was
compared to placebo in a prospective, genotype-stratified, cross-
over design [50]. In this study, both Arg16 and Gly16 homozygotes
experienced an improvement in lung function, but only Gly16
homozygotes were protected against BHR provoked by metacho-
line [50]. This loss of bronchoprotection to methacholine after 1-2
weeks of regular LABA use in Arg16 homozygotes was previously
described in a retrospective analysis of data from adult asthmatics
[51]. A prospective trial found no association between Arg16Gly
genotype and loss of bronchoprotection to EIB after 2 weeks
treatment with salmeterol [52].

In children, an increased risk for exacerbations in Arg16
homozygotes in a cohort of 1182 patients (aged 3-22y) on daily
salmeterol was reported [53]. An increase in oral corticosteroid use
and emergency department visits was found in 597 Arg16
homozygotes (aged 4-12y) on LABA/ICS combination therapy,
compared to Gly16 homozygotes [54]. A prospective randomized
controlled study in asthmatic children aged 5-18y showed that in
Arg16 homozygotes adding montelukast compared to salmeterol
to inhaled fluticasone significantly improved asthma symptoms,
asthma related school absence and quality of life (Figure 4) [55].

The increased risk of exacerbations associated with regular LABA
treatment in children compared to older age groups could result
from differences in the pathophysiology of asthma between adults
and children [56,57]. Airway smooth muscle in children might have
a shortened response and relaxation time [58]. Younger asthmatic
children have a higher reactivity to methacholine [59] and a faster
maximal bronchoconstriction post-exercise than adults [58–60]. In
epidemiologic studies, asthmatic children have a higher incidence
of exacerbations than adults [61]. This increased responsiveness of
the airway smooth muscle might wane with ageing. Possibly adult
asthmatics are less vulnerable to the negative effects of b2-agonists
due to more airway wall rigidity, caused by remodeling of the
bronchoconstrictive apparatus, or due to less atopy, a lower number
of inflammatory cells or receptors, or a decreased affinity of b2ARs
to their agonists.

CONCLUSIONS AND SUGGESTIONS FOR CLINICIANS

Despite the fact that b2-agonists are the most effective
bronchodilators currently used, their place in the treatment of
childhood asthma needs to be carefully considered, taking into
account possible genetic and environmental influences. For as-
needed therapy, SABAs remain the first choice. However, based on
the available evidence from clinical trials, it can reasonably be
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concluded that daily use of SABAs and/or LABAs, whether used for
protection or as rescue therapy, in the absence of ICS can have
adverse effects on asthma control. At the moment, there is no
consensus on how to balance benefits and risks of regular LABA/ICS
combination therapy, especially in children under the age of 12, due
to a paucity of randomized clinical data for children. The currently
available data on concomitant LABA/ICS use in children appears
reassuring [10]. More research in children < 12y is necessary to
provide evidence based recommendations. Based on current
evidence and guidelines we would like to suggest the following:

As recommended by the FDA [31] and clinical guidelines [3,4]
we should refrain from LABA monotherapy, as it does not treat the
underlying inflammation, could mask a deterioration of asthma
control and is associated with an increased risk of serious adverse
events. Combination therapy should be used as a single inhaler to
prevent periods of LABA monotherapy due to poor compliance
with ICSs.

LABA/ICS combination therapy should be used with caution in
children aged < 12 years. In children aged < 12y, few studies have
been performed to compare step-up options when asthma is not
well controlled on low-dose ICSs. In contrast to data in adult
studies, studies performed in children do not show a significant
superior effect of adding a LABA compared to a double dose of ICS
on asthma control, quality of life, BHR and risk of asthma
exacerbations [30]. Although addition of a LABA to ICS treatment
improves lung function, it may pose a risk due to a reduced effect of
rescue SABAs during acute airway narrowing. Concomitant use of
ICSs possibly mitigates the risk of asthma-related serious adverse
events [10], yet the number of pediatric studies is limited and these
studies should be interpreted with caution. We suggest to reserve
LABA/ICS combination therapy for children aged < 12y whose
asthma is inadequately controlled on a higher dose of ICSs alone,
with or without using a leukotriene receptor antagonist.

Finally, as we are moving towards precision medicine, a
randomized clinical trial comparing a pharmacogenetic approach
to asthma medication prescription guided by the patients b2AR
genotype compared to the traditional step up approach in all
patients is urgently needed.
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FUTURE RESEARCH DIRECTIONS

� More research on the safety and efficacy of long acting b2-
agonists in children < 12y is necessary to provide evidence based
recommendations.
� A randomized clinical trial comparing a pharmacogenetic

approach to asthma medication prescription guided by the
patients b2AR genotype compared to the traditional step up
approach is needed.
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