Received Date : 23-Aug-2016 Revised Date : 30-Jan-2017 Accepted Date : 08-Feb-2017 Article type : Review Article

The Role of the Skin Microbiome in Atopic Dermatitis: A Systematic Review

R. Dybboe¹; J. Bandier²; L. Skov²; L. Engstrand³ and J. D. Johansen¹

Authors affiliations:

¹: National Allergy Research Centre, Herlev & Gentofte Hospital, University of Copenhagen, Hellerup, Denmark

²: Department of Dermatology and Allergy, Herlev & Gentofte Hospital, University of Copenhagen, Hellerup, Denmark

³: Department of Microbiology, Tumor and Cell Biology and Center for Translational Microbiome Research,, Karolinska Institutet & Science for Life Laboratory, Stockholm, Sweden

Corresponding Author: Rie Dybboe, MSc, PhD-student. National Allergy Research Centre, Herlev & Gentofte Hospital, Kildegårdsvej 28, 2900 Hellerup, Denmark. E-mail address: rie.dybboe@regionh.dk. Telephone: +45 38677302

Conflict of interest: None.

Funding: A grant from Danish Environmental Protection Agency is supporting salary of the scientists at the National Allergy Research Centre.

What's already known about this topic?

• Dysbiosis is a hallmark of atopic dermatitis: *Staphylococcus aureus* colonisation is frequent and affects disease severity adversely.

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/bjd.15390

• Recent availability of culture-independent methods to profile microorganisms has enabled studies of whole microbial communities and their role in dermatitis.

What does this study add?

- The atopic dermatitis skin has low bacterial diversity, high non-*Malassezia* fungal diversity, high abundance of *Staphylococcus aureus* and *Staphylococcus epidermidis* and reduced abundances of other genera.
- An animal study indicates that dysbiosis is a driving factor in eczema.
- More data are warranted for better characterization of the role of the microbiome in atopic dermatitis and the influence of methodological approaches needs to be resolved.

Summary

Background: Dysbiosis is a hallmark of atopic dermatitis. The composition of skin microbiome communities and the causality of dysbiosis in eczema have not been well established.

Objective: To describe the skin microbiome profile in atopic dermatitis and address if there is a causal relationship between dysbiosis and atopic dermatitis.

Methods: The protocol is registered in PROSPERO (CRD42016035813). We searched PubMed, Embase, Scopus and ClinicalTrials.gov for primary research studies applying culture-independent analysis on the microbiome on atopic dermatitis skin of humans and animal models. Two authors independently full-text screened studies for eligibility and assessed risk of bias. Because of heterogeneity no quantitative synthesis is made.

Findings: Of 5735 texts, 32 met the inclusion criteria and 17 of these are published; 11 human and 6 animal studies. The studies varied in quality and applied different methodology. The skin in atopic dermatitis had low bacterial diversity (lowest at dermatitis involved sites) and 3 studies showed depletion of *Malassezia* species and high non-*Malassezia* fungal diversity. The relative abundance of *Staphylococcus aureus* and *Staphylococcus epidermidis* were elevated and other genera were reduced, incl. *Propionibacterium*. A mouse study indicated that dysbiosis is a driving factor in eczema pathogenesis.

Conclusion: The data is not sufficiently robust for good characterisation; however, dysbiosis in atopic dermatitis does not only implicate *Staphylococcus* species, but also microbes such as

Propionibacterium and Malassezia. A causal role of dysbiosis in eczema in mice encourages future studies to investigate if this applies in humans too. Other important aspects are temporal dynamics and the influence of methodology on microbiome data.

Introduction

Recent availability of culture-independent methods to profile microorganisms and study microbial communities has increased our understanding of the microbiome and its impact in health and disease. Much research has focused on the gut microbiome where findings demonstrate associations between dysbiosis and diseases such as diabetes and asthma ¹. The number of skin microbiome studies is rising. The skin is composed of a variety of niches selecting for colonization by specific microorganisms ². Host factors, e.g. sex ³, age ⁴, and environmental exposures ^{3, 5, 6}, also affect the niches and microbiome communities and it is becoming increasingly apparent that the skin microbiome in turn influences vital functions in the host such as immunity and colonisation by pathogenic microorganisms ⁵.

Atopic dermatitis (AD) is a chronic skin disease affecting up to 20% children, with lesser prevalence in adults ⁷. It manifests with dry, itchy skin, relapsing eczema at sites depending on age: The cheeks on infants are typically the first place to be affected, extensor aspects of joints in toddlers, flexures in older children and a various presentation in adults. AD is characterised by immune dysregulation predisposing to IgE production ⁸. Conventional culture-based work has established that dysbiosis is a hallmark too ⁹, 70% of lesional and 39% non-lesional skin sites are colonised by *S. aureus* ¹⁰, which adversely affects disease severity. Not only bacteria but also the fungi are implicated ¹¹. Conventional culturing fails to grow about 80% of bacterial species ¹². By applying culture-independent molecular methodology dysbiosis is broadly described and the relative amount of present microbes becomes evident, which is also true for microbes not present. Though skin dysbiosis and the microbiome are anticipated an important role in development of treatments, there has been no systematic review on the skin microbiome profile in AD. AD is a multifactorial disease, but the gene-environment interactions leading to development of AD are not fully understood. Controversy remains as to

Whether the skin microbiome is a primary factor in AD pathogenesis is uncertain. This systematic review provides an overview of the AD skin microbiome profile. It is questioned if causal relationships between the skin microbiota and disease exist. To elaborate on this question animal studies are also included and the effect of treatment of AD on the microbiome is evaluated. A discussion of future directions in AD microbiome research is included. Methods

Complete methods of the literature search, risk of bias and data extraction were specified in advance and documented in a protocol registered in PROSPERO (CRD42016035813).

distinguishing between primary events leading to AD and secondary events resulting from AD¹³.

A systematic literature search was conducted October 21 2016 in PubMed, Embase, Scopus and ClinicalTrials.gov using search terms from the categories: Skin, microbiome and AD – without language and date limitations. After an initial screen of title and abstracts, two authors independently screened full texts for eligibility. Primary research studies (observational and interventional) were included if they applied culture-independent methods and whole community analyses to characterise the AD skin microbiome of humans and animal models. Studies were excluded if they did not present data, included a wrong study population, investigated the microbiome of other body sites or investigated selected microbial taxonomic units. Duplicate studies were excluded. Disagreements on eligibility were resolved by contacting the authors of the original studies.

Two authors assessed risk of bias. For the human studies we used the Cochrane Collaboration's tool for randomised controlled trials (RCT's) and adjusted Newcastle-Ottawa Scales for analytical non-randomized case-control studies and cohort studies without a control group. For the animal studies we used adjusted versions of the Systematic Review Centre for Laboratory Animal Experimentation's (SYRCLE) risk of bias tool ¹⁴. Highest-quality evidence received greatest emphasis.

Two authors collected study characteristics and relative abundances of microbial taxonomic units (when >1% and significant differences were found compared to a reference).

The criteria for study inclusion allow for heterogeneity in study population, design and methods. Therefore no quantitative synthesis was carried out.

Results

5735 studies were identified (fig. 1). After review of title and abstract, 90 were full text screened. Based on selection criteria, 32 records were included -17 were published (table 1) and 15 were ongoing (supplementary table 1). The published studies were examined in most detail.

Human studies

Study description

Eleven human studies were identified (table 1): 2 RCTs, 7 case-control studies and 2 cohort studies. The studies included 355 AD patients. Oh et al. ¹⁵ included also patients with primary immunodeficiencies (N=41), characterised with AD-like eczema. Their data is regarded as from an AD population. The age of the participants spanned from 2 months to 62 years and both sexes were included in 10/11 studies ¹⁵⁻²². AD was clinically characterised by SCOring of Atopic Dermatitis (SCORAD) in 8/11 studies ^{15-19, 21-23}, Eczema Area and Severity Index in 1/11 studies ²⁴ and Rajka-Langeland in 1/11 studies ⁴. Patients with mild AD were included in 2 studies ^{16, 20}, moderate in 9 studies ^{4, 15-20, 23, 24} and severe in 7 studies ^{4, 15-17, 19, 20, 24, 25}. Only one study ²⁰ distinguished microbiome compositions according to disease severity. The skin microbiome of anatomically defined skin area(s) were investigated in 9/11 studies ^{4, 15, 17, 19-21, 23, 25}. Other compared affected and non-affected skin sites ^{4, 16, 18, 23, 24}. Well defined criteria for treatment allowed before and during the studies were provided in 10/11 studies ^{4, 15, 16, 18-25}.

Methodology

The primary sampling technique of skin was swabs. No biopsies were taken. Different protocols were used for DNA extraction. One study applied a metagenomic sequencing approach profiling all microbes ²⁵. For bacterial microbiome analyses 10/11 studies used 16S rRNA sequencing ^{4, 15-19, 21-24} applying either broad-range16S gene primers ^{17, 19} or targeting hypervariable region 1-3 (V1-V3) ^{4, 15, 21, 22}, V3 ¹⁶, V4²⁴, V1-V2 ¹⁸ or V2-V3 ²³. The fungal microbiome was characterised in 2 studies ^{15, 20}, using either the Internal Transcriber Spacer sequence and 18S rDNA as targets for amplification ¹⁵ or

the D1/D2 hypervariable region of the 28S rDNA gene ²⁰. The amount of PCR cycles differed from 30 ^{16, 20, 23} to 35 ^{18, 24} to 40 ¹⁷. Five studies did not provide information on the number of PCR cycles ^{4, 15, 19, 21, 22}. Relative abundances of microbial taxonomic units were provided in percentages in 7/11 studies ^{4, 15-17, 19, 20, 25}, in 5 studies estimations were made from readings of figures ^{18, 21-24}. Taxonomic classification was performed either on genus- ^{15, 17-19, 21, 24}, family- ^{22, 23} or species-level ^{4, 17, 20, 25}. More studies included additional species-level identification of *Staphylococcus* ^{15, 18, 19, 22} or only *S. aureus* ²¹. The study by Bourrain ¹⁶ only identified *S. aureus* versus diversified microbiota.

Risk of bias

The quality of the human studies varied (table 2). We rated them as very good (total score=9 and one RCT rated low in risk of bias; N=4), good (total score=7-8; N=4), fair (total score=5; N=2) and poor (a poorly reported RCT; N=1). The main reason for downgrading the quality of the "fair" studies was either lack of information on cases and controls ²⁰ or missing a proper non-exposed control ¹⁸.

AD skin microbiome profile

S. aureus was abundant on AD skin compared to control ^{4, 15, 19} and correlated positively to disease severity ¹⁵ (table 3). Affected skin sites were more *S. aureus* dominated than unaffected ^{4, 15, 16, 26}; especially inflamed areas (compared to xerotic) ¹⁶ – and during a flare the abundance increased dramatically in untreated patients ¹⁹. Besides *S. aureus*, other species from the genus *Staphylococcus* increased on involved sites ²⁴. These included *S. epidermidis* ^{15, 19, 26} and *S. haemolyticus* ¹⁵.

The bacterial diversity on AD skin was low compared to control ^{15, 19} and reduced during a flare ¹⁹. Reductions in species from the genera *Streptococcus*, *Propionibacterium* ⁴, *Acinetobacter*, *Corynebacterium* and *Prevotella* were found – not solely attributed to *S. aureus* increase ¹⁹. *Propionibacterium acnes* was also found less frequent on facial AD skin compared to control ¹⁷ and was inversely correlated to disease severity ¹⁵. Interestingly, though *Corynebacterium* decreased during AD flares ¹⁹, it was increased in the antecubital flexure of primary immunodeficiency patients ¹⁵. After a flare, the species that were reduced increased in relative abundance ¹⁹.

The fungal microbiome showed that AD patients had overall depleted *Malassezia* family members²⁵, however enrichment of *M. dermatis*²⁵ and more diverse non-*Malassezia* species compared to healthy controls ^{15, 20}. These included *Aspergillus* ¹⁵, *Candida albicans* and *Cryptococcus diffluens* ²⁰.

Effect of treatment on the skin microbiome in AD

Compared to no treatment, intermittent-treatment decreased *S. aureus* predominance and loss of bacterial diversity during a flare ¹⁹ (table 3) – with no improvement in SCORAD (data in original paper by Kong). In contrast, Oh et al. found no such treatment-associated shifts in bacterial community diversity ¹⁵.

One study evaluated the effect of dilute blech baths and found that 10 days of baths improved SCORAD and number of lesional sites colonised by *S. aureus* ¹⁶. Another study evaluated the effect of topical corticosteroid treatment alone or in combination with dilute bleach baths. Both treatments improved the clinical eczema representation and suppressed *Staphylococcus* on both lesional and non-lesional sites – concluding no effect of the additional dilute bleach baths ²⁴.

Emollient usage improved SCORAD and resulted in minor changes in the microbiome: 28 days of emollient usage did not induce changes in genus-level microflora at unknown skin site(s) but *S. aureus* increased in the non-emollient control group only ²¹. 84 days of emollient usage on affected and unaffected sites improved SCORAD in 26 individuals out of 36 ²⁶. These 26 individuals had less relative abundance of *Staphylococcus* spp. and significantly more *Stenotrophomonas* – which also was inversely correlated to disease severity ¹⁵. However, *Stenotrophomonas maltophilia* was found in facial skin in AD patients (not in controls) ¹⁷.

Association between dysbiosis and AD

Two months old infants who later were diagnosed with AD and had affected skin at the age of 12 months had demonstrated significantly lower number of commensal *Staphylococcus* species in their antecubital fossae than children with unaffected skin at the age of 12 months ²². These data suggest that cutaneous dysbiosis might play a role in initiation of AD and further that exposure to commensal staphylococci during early infancy might be important.

Animal studies

We included 6 animal studies (table 1) either with AD dogs or mouse models; 4 non-interventional and 2 interventional. Four studies sampled the skin by swabbing ²⁷⁻³⁰ and 2 by biopsies ^{31, 32}. Different DNA extraction protocols were used. The bacterial microbiome was analysed in 5/6 studies by 16S

rRNA sequencing $^{27, 29-32}$. The fungal microbiome was characterized in one study 28 . No information on the amount of PCR amplification cycles were given in 4/6 studies $^{27-30}$.

Relative abundances of microbial taxonomic units was provided in percentages in 3/6 studies ^{27, 28, 32} and estimated from readings of figures in 3 studies ²⁹⁻³¹. Taxonomic classification was performed either on family-level ^{29, 32} with additional analysis of *Staphylococcus* species in one study ²⁹, genus-^{27, 28, 31} or phylum- with species-level identifications of *Staphylococcus* and *Corynebacterium* ³⁰.

The animal studies were mostly unclear in risk of bias (table 2) due to poor reporting, which is common for animal studies ¹⁴.

Animal AD skin microbiome profile and effect of treatment

Like humans, AD dogs ^{27, 29} and Adam17-deficient mice ³³ had decreased bacterial diversity, increased abundance of *Staphylococcus* species ²⁹ and *S. aureus* at the onset of eczematous inflammation ³³ (table 4). *Corynebacterium* species were also increased ^{29, 31, 33}.

Antimicrobial treatment of dogs presenting AD lesions²⁹ decreased the clinical eczema score and transepidermal water loss. No difference was found in skin pH. Furthermore, bacterial diversity normalised with decreased relative abundance of *Staphylococcus* species.

Causality between dysbiosis and AD

In Adam17-deficient mice ³³ a prescreening of microbial composition was used to target systemic antimicrobial therapy. Therapy resulted in decreased clinical scores and transepidermal water loss along with decreased relative abundance of the targeted species, *S. aureus* and *C. bovis*, and increased bacterial diversity. Withdrawal of treatment dissipated the improvements in diversity. Eczema and dysbiosis re-appeared after 2 weeks, as shown in a cross over design, where systemic antibiotics was shown to protect the Adam17-deficent mice from developing eczema and loosing microbiome diversity. These data suggest a causal relationship between dysbiosis and AD in an animal model.

Discussion

In this systematic review we demonstrated that AD skin in humans is characterised by low bacterial diversity and high non-*Malassezia* fungal diversity. On involved skin the bacterial diversity was even

studies.

lower. The relative abundance of both S. aureus and S. epidermidis was elevated and the abundance of Propionibacterium was reduced, along with other genera; Streptococcus, Acinetobacter, Corynebacterium and Prevotella. A birth cohort study indicated that absence of early colonization with commensal staphylococci might precede AD presentation and an animal study indicated that dysbiosis was a driving factor in pathogenesis of eczema. In interpreting this data synthesis, it should be emphasised that the data was drawn from few studies with substantial heterogeneity and varied quality. Many of the included studies (15 of 17) analysed the microbiome using 16S rRNA sequencing, and eventhough the 16S rRNA gene is widely accepted as a biological fingerprint for bacterial species, there are some limitations. Some bacterial species have multiple copies of 16S rRNA genes, which may lead to an artificial overrepresentation in data ³⁴. In addition, technical aspects may introduce uncertainty too; these include sampling technique ³⁵, DNA extraction ³⁶ and sequencing protocol³⁷. For instance classification accuracy varies with the specific regions of the 16S rRNA gene chosen to be sequenced ³⁷. The limitations to 16S surveys have made the newer approach whole metagenome shotgun sequencing attractive. This method allows for analysis of the entire gene content of the microbial population, catch most species and may sequence deep enough to identify strains ³⁷. This is crucial when it comes to understanding the physiological implications of a modified microbiome. Only 1/17 studies applied this method. Sequences obtained have short read lengths and many have no representative within databases. Therefore the different methodology applied in the included studies likely affect outcome in microbiome composition and underline the importance of transparency in methodological approach. Not all studies included provided enough information on each methodological step. This shows a need for a guideline for good reporting on microbiome

A common criticism using DNA-based technology to identify microbial communities is that DNA from dead and viable microorganisms are not distinguished. In the future, attempts to reduce DNA from dead microorganisms or performing RNA (cDNA) based community analysis may help minimizing detection of dead microorganisms. Such approaches would also contribute to enlighten potential interplays and communication between host and microbiome, e.g. in processes such as eczematous inflammation. Studies are moving from describing the microbiome to focus on

interactions by implicating also RNA, protein and/or metabolite data. A study by Fyhrquist showed a positive correlation between the relative abundance of skin *Acinetobacter* species and expression of anti-inflammatory molecules among healthy subjects, which was not present in atopic individuals ³⁸. In the study by Kong ¹⁹, the relative abundance of *Acinetobacter* increased post flare – which supports a potential anti-inflammatory role of *Acinetobacter* in AD.

Ongoing studies investigate the effect of age and treatment of AD (supplementary table 1). The findings of *Corynebacterium* being reduced in AD flares, but increased in the antecubital flexure of primary immunodeficiency patients suggest that underlying genetics may affect the microbiome. Mutations in the gene encoding the protein filament aggregating protein, filaggrin, leading to a functional absence of the protein predisposes individuals to develop atopic eczema ³⁹, increase stratum corneum pH ⁴⁰ and increase susceptibility to recurrent bacterial skin infection among patients with AD ⁴¹. Filaggrin deficiency in ichthyosis vulgaris is associated with a low abundance of proteolytic Grampositive anaerobic cocci, which are shown better at inducing expression of antimicrobial peptides in cultured keratinocytes ⁴². This could be a mechanism favoring growth of *S. aureus* or infection. A trend for lower bacterial diversity in one control and two AD filaggrin-null mutation subjects was seen in the study by Chng ²⁵. However, the role of filaggrin on the skin microbiome in AD is not known and none of the studies included in this review could elaborate thoroughly on this.

In line with the *S. aureus* data in this review, a recent meta-analysis showed that patients with AD were more likely to be colonized with *S. aureus* than healthy controls, with higher odds rations on lesional skin (19.74, 95% CI: 10.88-35.81) compared to non-lesional (7.77, 95% CI: 3.82-15.82)¹⁰. With *S. aureus* being more abundant on non-lesional skin suggests that the skin is susceptible to pathogen colonization and in risk to progress toward diseased state. This indicates that anti-staphylococcal treatment could be beneficial. However, a systematic review by Bath-Hextall ⁴³ showed that reducing the numbers of *S. aureus* in people with uninfected eczema, did not result in reduced disease activity. Targeting specific *S. aureus* strains could potentially improve the outcome of anti-staphylococcal treatment. This is supported by the finding of a single nucleotide polymorphism in a staphylococcal lipase gene being preferentially hosted in AD ²⁵. However, targeting other bacteria

might also be beneficial. An idea of a critical window early in life where exposure to certain microbes are important for development of the immune system and allergic diseases has arisen and is supported by studies showing reduced microbial diversity in the gut before atopy development ^{1, 44, 45}. Further, tolerance to the skin commensal S. epidermidis is preferentially established in neonatal life in mice ⁴⁶. Current data²² is limited and it is difficult to evaluate whether the cutaneous microbiome play a role in initiation of AD. Hypothesising that dysbiosis precede AD flares and severity, studies are currently investigating prevention and treatment targeting dysbiosis. Moisturisers are key in AD management to restore and preserve skin barrier integrity. A RCT showed that emollient therapy from birth in high risk AD babies enhanced the skin barrier and reduced the relative risk of AD incidence with 50% after 6 months ⁴⁷. An ongoing study by Glatz (supplementary table 1) investigates if shifts in the skin microbiome are associated with this improvement. Preliminary data show that preventative emollient usage lowers pH, does not change transepidermal water loss and increases the number of bacterial taxonomic units and Streptococcus spp. 48. Since Streptococcus was reduced during flares 19 but increased in the abscense of commensal staphylococci in infants before AD presentation ²² future studies should investigate the role of *Streptococci* species in AD. *Stenotrophomonas* spp. may also have an important role with restoration of the skin microbiome¹⁸.

Another approach to manipulate the skin microbiome is adding beneficial bacteria to moisturisers. A RCT showed that cream containing 5% lysate of the nonpathogenic Proteobacteria *Vitreoscilla filiformis* significantly improved SCORAD, transepidermal water loss, the AD patient's assessment of itch and loss of sleep compared to placebo ⁴⁹. Ongoing studies by Gallo and colleagues apply the same principle: In attempt to decrease *S. aureus* colonisation in AD skin, they isolate beneficial *Staphylococcal* species from the patients themselves and place them in a moisturiser, applied to the subjects own arms (supplementary table 1).

To utilize the microbiome in prevention and treatment strategies of AD, more data from human studies are needed on the skin microbiome dynamics related to clinical measures, temporal resolution and how different factors modify the microbial abundances to be able to predict responses in the

microbiome to perturbations. Good speciation and strain-level identification in combination with RNA, protein and metabolite data would strengthen such data and provide valuable insight.

Conclusion

While the microbiome draw increasingly attention as target in prevention and treatment of AD, new methodological approaches have not yet brought us far in understanding the impact of dysbiosis in AD. Staphylococcal species are key players in worsening of AD, and may also be important in the establishment of the disease. Other microbes such as *Propionibacterium*, *Streptococcus*, *Acinetobacter and Malassezia* have been found to be implicated in AD dysbiosis. However, robust data are missing on the influence of methodological procedures, characteristics on the microbiome structure related to temporal dynamics, clinical measures and factors altering the microbiome.

Acknowledgements

We would like to thank scientists conducting primary research for providing information regarding eligibility for this review. We would also like to thank Eik Bjerre for his methodological advice on usage of systematic tools.

References

1. Arrieta MC, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-Doutsch S, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 2015;7(307):307ra152.

2. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324(5931):1190-2.

3. Fierer N, Hamady M, Lauber CL, Knight R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(46):17994-9.

 Shi B, Bangayan NJ, Curd E, Taylor PA, Gallo RL, Leung DY, et al. The skin microbiome is different in pediatric versus adult atopic dermatitis. J Allergy Clin Immunol. 2016;138(4):1233-6.
 Rosenthal M, Aiello A, Larson E, Chenoweth C, Foxman B. Healthcare workers' hand microbiome may mediate carriage of hospital pathogens. Pathogens. 2013;3(1):1-13.

6. Callewaert C, Hutapea P, Van de Wiele T, Boon N. Deodorants and antiperspirants affect the axillary bacterial community. Arch Dermatol Res. 2014;306(8):701-10.

7. Carroll CL, Balkrishnan R, Feldman SR, Fleischer AB, Jr., Manuel JC. The burden of atopic dermatitis: impact on the patient, family, and society. Pediatr Dermatol. 2005;22(3):192-9.

Akdis CA, Akdis M, Bieber T, Bindslev-Jensen C, Boguniewicz M, Eigenmann P, et al. 8. Diagnosis and treatment of atopic dermatitis in children and adults: European Academy of Allergology and Clinical Immunology/American Academy of Allergy, Asthma and Immunology/PRACTALL Consensus Report. Allergy. 2006;61(8):969-87.

Leyden JJ, Marples RR, Kligman AM. Staphylococcus aureus in the lesions of atopic dermatitis. The British journal of dermatology. 1974;90(5):525-30.

Totte JE, van der Feltz WT, Hennekam M, van Belkum A, van Zuuren EJ, Pasmans SG. Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: a systematic review and meta-analysis. Br J Dermatol. 2016.

Darabi K, Hostetler SG, Bechtel MA, Zirwas M. The role of Malassezia in atopic 11. dermatitis affecting the head and neck of adults. Journal of the American Academy of Dermatology. 2009;60(1):125-36.

12. Ward DM, Weller R, Bateson MM. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature. 1990;345(6270):63-5.

Bieber T. Mechanisms of disease: Atopic dermatitis. New England Journal of Medicine. 13. 2008;358(14):1483-94.

14. Zeng X, Zhang Y, Kwong JS, Zhang C, Li S, Sun F, et al. The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: a systematic review. J Evid Based Med. 2015;8(1):2-10.

Oh J, Freeman AF, Park M, Sokolic R, Candotti F, Holland SM, et al. The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome Research. 2013;23(12):2103-14.

Bourrain M, Ribet V, Calvez A, Lebaron P, Schmitt AM. Balance between beneficial microflora and Staphylococcus aureus colonisation: in vivo evaluation in patients with atopic dermatitis during hydrotherapy. Eur J Dermatol. 2013;23(6):786-94.

Dekio I, Sakamoto M, Hayashi H, Amagai M, Suematsu M, Benno Y. Characterization of skin microbiota in patients with atopic dermatitis and in normal subjects using 16S rRNA genebased comprehensive analysis. J Med Microbiol. 2007;56(Pt 12):1675-83.

Seite S, Bieber T. Barrier function and microbiotic dysbiosis in atopic dermatitis. Clin Cosmet Investig Dermatol. 2015;8:479-83.

Kong HDH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Research. 2012;22(5):850-9.

Zhang E, Tanaka T, Tajima M, Tsuboi R, Nishikawa A, Sugita T. Characterization of the skin fungal microbiota in patients with atopic dermatitis and in healthy subjects. Microbiol Immunol. 2011;55(9):625-32.

Bianchi P, Theunis J, Casas C, Villeneuve C, Patrizi A, Phulpin C, et al. Effects of a New Emollient-Based Treatment on Skin Microflora Balance and Barrier Function in Children with Mild Atopic Dermatitis. Pediatr Dermatol. 2016;33(2):165-71.

Kennedy EA, Connolly J, Hourihane JO, Fallon PG, McLean WH, Murray D, et al. Skin microbiome before development of atopic dermatitis: Early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year. J Allergy Clin Immunol. 2016.

Drago L, De Grandi R, Altomare G, Pigatto P, Rossi O, Toscano M. Skin microbiota of first cousins affected by psoriasis and atopic dermatitis. Clinical and Molecular Allergy. 2016;14(1). Gonzalez ME, Schaffer JV, Orlow SJ, Gao Z, Li H, Alekseyenko AV, et al. Cutaneous microbiome effects of fluticasone propionate cream and adjunctive bleach baths in childhood atopic 25. Chng KR, Tay ASL, Li C, Ng AHQ, Wang J, Suri BK, et al. Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nature Microbiology. 2016;1(9).

26. Seite S, Flores GE, Henley JB, Martin R, Zelenkova H, Aguilar L, et al. Microbiome of affected and unaffected skin of patients with atopic dermatitis before and after emollient treatment. J Drugs Dermatol. 2014;13(11):1365-72.

27. Rodrigues Hoffmann A, Patterson AP, Diesel A, Lawhon SD, Ly HJ, Elkins Stephenson C, et al. The skin microbiome in healthy and allergic dogs. PloS one. 2014;9(1):e83197.

28. Meason-Smith C, Diesel A, Patterson AP, Older CE, Mansell JM, Suchodolski JS, et al. What is living on your dog's skin? Characterization of the canine cutaneous mycobiota and fungal dysbiosis in canine allergic dermatitis. FEMS Microbiol Ecol. 2015;91(12).

29. Bradley CW, Morris DO, Rankin SC, Cain CL, Misic AM, Houser T, et al. Longitudinal Evaluation of the Skin Microbiome and Association with Microenvironment and Treatment in Canine Atopic Dermatitis. J Invest Dermatol. 2016.

 Kobayashi T, Glatz M, Horiuchi K, Kawasaki H, Akiyama H, Kaplan DH, et al. Dysbiosis and Staphyloccus aureus Colonization Drives Inflammation in Atopic Dermatitis. Immunity. 2015;42(4):756-66.

31. Scharschmidt TC, List K, Grice EA, Szabo R, Renaud G, Lee CC, et al. Matriptasedeficient mice exhibit ichthyotic skin with a selective shift in skin microbiota. J Invest Dermatol. 2009;129(10):2435-42.

32. Kubica M, Hildebrand F, Brinkman BM, Goossens D, Del Favero J, Vercammen K, et al. The skin microbiome of caspase-14-deficient mice shows mild dysbiosis. Exp Dermatol. 2014;23(8):561-7.

33. Kobayashi T, Glatz M, Horiuchi K, Kawasaki H, Akiyama H, Kaplan DH, et al. Dysbiosis and Staphylococcus aureus Colonization Drives Inflammation in Atopic Dermatitis. Immunity. 2015;42(4):756-66.

34. Pei AY, Oberdorf WE, Nossa CW, Agarwal A, Chokshi P, Gerz EA, et al. Diversity of 16S rRNA genes within individual prokaryotic genomes. Appl Environ Microbiol. 2010;76(12):3886-97.

35. Grice EA, Kong HH, Renaud G, Young AC, Bouffard GG, Blakesley RW, et al. A diversity profile of the human skin microbiota. Genome Research. 2008;18(7):1043-50.

36. Willner D, Daly J, Whiley D, Grimwood K, Wainwright CE, Hugenholtz P. Comparison of DNA extraction methods for microbial community profiling with an application to pediatric bronchoalveolar lavage samples. PloS one. 2012;7(4):e34605.

Meisel JS, Hannigan GD, Tyldsley AS, SanMiguel AJ, Hodkinson BP, Zheng Q, et al. Skin
 Microbiome Surveys Are Strongly Influenced by Experimental Design. J Invest Dermatol.
 2016;136(5):947-56.

38. Fyhrquist N, Ruokolainen L, Suomalainen A, Lehtimaki S, Veckman V, Vendelin J, et al. Acinetobacter species in the skin microbiota protect against allergic sensitization and inflammation. Journal of Allergy and Clinical Immunology. 2014;134(6):1301-9.e11.

39. Nomura T, Akiyama M, Sandilands A, Nemoto-Hasebe I, Sakai K, Nagasaki A, et al. Prevalent and rare mutations in the gene encoding filaggrin in Japanese patients with ichthyosis vulgaris and atopic dermatitis. J Invest Dermatol. 2009;129(5):1302-5.

40. Gruber R, Elias PM, Crumrine D, Lin TK, Brandner JM, Hachem JP, et al. Filaggrin genotype in ichthyosis vulgaris predicts abnormalities in epidermal structure and function. Am J Pathol. 2011;178(5):2252-63.

41. Cai SCS, Chen H, Koh WP, Common JEA, van Bever HP, McLean WHI, et al. Filaggrin mutations are associated with recurrent skin infection in Singaporean Chinese patients with atopic dermatitis. British Journal of Dermatology. 2012;166(1):200-3.

42. Zeeuwen PL, Ederveen TH, van der Krieken DA, Niehues H, Boekhorst J, Kezic S, et al. Gram-positive anaerobe cocci (GPAC) are underrepresented in the microbiome of filaggrin-deficient human skin. J Allergy Clin Immunol. 2016. 43. Bath-Hextall FJ, Birnie AJ, Ravenscroft JC, Williams HC. Interventions to reduce Staphylococcus aureus in the management of atopic eczema: An updated Cochrane review. British Journal of Dermatology. 2010;163(1):12-26.

44. Abrahamsson TR, Jakobsson HE, Andersson AF, Bjorksten B, Engstrand L, Jenmalm MC. Low diversity of the gut microbiota in infants with atopic eczema. Journal of Allergy and Clinical Immunology. 2012;129(2):434-U244.

45. Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L, Jenmalm MC. Low gut microbiota diversity in early infancy precedes asthma at school age. Clinical and Experimental Allergy. 2014;44(6):842-50.

46. Scharschmidt TC, Vasquez KS, Truong HA, Gearty SV, Pauli ML, Nosbaum A, et al. A Wave of Regulatory T Cells into Neonatal Skin Mediates Tolerance to Commensal Microbes. Immunity. 2015;43(5):1011-21.

47. Simpson EL, Chalmers JR, Hanifin JM, Thomas KS, Cork MJ, McLean WH, et al. Emollient enhancement of the skin barrier from birth offers effective atopic dermatitis prevention. J Allergy Clin Immunol. 2014;134(4):818-23.

48. Glatz M, Polley EC, Simpson EL, Kong HH. Emollient therapy alters skin barrier and microbes in infants at risk for developing atopic dermatitis. Journal of Investigative Dermatology. 2015;135:S31.

49. Gueniche A, Knaudt B, Schuck E, Volz T, Bastien P, Martin R, et al. Effects of nonpathogenic gram-negative bacterium Vitreoscilla filiformis lysate on atopic dermatitis: A prospective, randomized, double-blind, placebo-controlled clinical study. British Journal of Dermatology. 2008;159(6):1357-63.

50. Barthow C, Wickens K, Stanley T, Mitchell EA, Maude R, Abels P, et al. The Probiotics in Pregnancy Study (PiP Study): Rationale and design of a double-blind randomised controlled trial to improve maternal health during pregnancy and prevent infant eczema and allergy. BMC Pregnancy and Childbirth. 2016;16(1).

Figure 1: Flow diagram of study selection

I	irst author	Samp- ling	Area sampled	Setting	Study population	Treatment	N	Study type	Samp- le #	Method Extraction and sequencing	Physiological and clinical measures
	Bourrain ¹⁶	Swab	5 cm ² Inflam., Non-lesional and Xerotic sites Body site: NA (dry, moist, seb.)	France	Mild-severe AD 18-40 years Mixed sex	Before and during the study: 1 wk: No use of top. steroids. 2 wk: No use of top. or oral immunomodulators, antibiotics, antiseptics or antifungal	25	Prospective cohort study: 18 days of hydrotherapy	4	DNeasy Blood and Tissue kit (Qiagen) 16S rRNA (V3), 30 PCR cycles Diversified microflora or <i>S. aureus</i> abundant	SCORAD
	Dekio ¹⁷	Swab- scrub	4.9 cm ² facial skin	Japan	Modsevere AD, Healthy ctrl 19-54 years Mixed sex	Not specified	13 AD 10 Ctrl	Case-control	1	Extraction buffer, glass beads 16S rRNA (V1-V9), 40 PCR cycles, Terminal Restriction Fragment Length Polymorphism	SCORAD
udies	Flores ¹⁸	Swab	1 cm ² of affected and nearby unaffected skin Body site: Diverse	France, Slovakia and USA, Californi a and Colorado	Mod. AD 3-39 years Mixed sex	During the study: Instucted not to use other emollients or drugs, incl. corticotherapy and antibiotherapy	49	Prospective cohort study: 84 days emollient treatment	2	MoBio PowerSoil DNA isolation kit 16S rRNA (V1-V2), 35 PCR cycles, 454-pyrosequencing	SCORAD, erythema, dryness, desquamation
	Kong ¹⁹	Swab	Antecubital and popliteal creases, volar forearms, nares	USA, Maryland	Modsevere AD Healthy ctrl 2-15 years Mixed sex	"No": No top. for 1 wk, no oral antibiotics for 4 wk prior to sampling. "Intermittent": Top. in the prev. 1 wk and/or oral antibiotics in the prev. 4 wk	12 AD 11 Ctrl	Case-control: Baseline-flare-post flare Treatment (No N=7, intermittent N=5)	3	Lysis buffer and lysozyme, bead-beated, Invitrogen PureLink Genomic DNA kit 16S rRNA (V1-V8), Sanger sequencing	SCORAD
Human stu	Oh ¹⁵	Swab and scrape	4 cm ² . Nares, retroauricular crease, antecubital fossa, volar forearm	USA, Maryland	PID patients (2-37 y) with 1) Hyper IgE, 2) Wiskott-Aldrich, 3) DOCK8 deficiency. Mod severe AD (2-17 y). Healthy ctrl (2-40 y). Mixed sex	Only data on PID patients: 22/25 H patients got antifungals and/or antibiotics. 6/10 W patients got antibiotics. 4/6 D patients got antibiotics	41 PID: 25H, 10W, 6D. 13 AD 49 Ctrl	Case-control	1	Lysis buffer and lysozyme, bead-beated, Invitrogen PureLink Genomic DNA kit 16S rRNA (V1-V3) 18SF and ITS1 (Only H patients) Sanger and 454 Sequencing	SCORAD
	Zhang ²⁰	Strip (x3)	63 cm ² facial skin	Japan	Mild, mod., severe AD Healthy ctrl Mixed sex	Intermittent medium/strong top. steroids. No systemic or top. antibiotics or antifungals	3+3+3 AD 10 Ctrl	Case-control	1	Lysing solution, ethanol precipitation 28S rDNA (D1/D2), 30 PCR cycles, Sanger (3730x)	
	Bianchi ²¹	Scratch	Right antecubital fossa (unaffected)	France, Italy	Children with mild AD 1-4 years Mixed sex	No immunosuppressant's a month before. Systemic antibiotics, probiotics or anti-inflammatory treatment 2 wk before, local top. a wk and no cream 48 h before	55	RCT: 28 days of 1) hygiene product or 2) hygiene product + emollient	2	QIAamp DNA Investigator Kit 16S rRNA (V1-V3), 454- pyrosequencing	SCORAD TEWL
	Drago ²³	Scrape	Scrape Behind the ear (lesional + non-lesional) Italy		3 first cousins: mod. AD, mod. psoriasis, healthy ctrl 50 y Males	No pharmacological therapy or probiotics 1 month before sampling. Restricted on lifestyle, diet, sexual activity, personal care	1 AD 1 Ctrl	Case-control	1	Geneaid Genomic DNA Mini Kit (tissue) 16S rRNA (V2-V3), 30 PCR cycles Torrent PGM	SCORAD
	Kennedy ²²	Swab	Antecubital and popliteal fossae, nasal tip, cheek	Ireland USA, Maryland	AD and healthy ctrl infants from the Cork BASELINE Birth Study Mixed sex	Emollient usage in 6/10 AD infants and 2/10 healthy. No differences in bathing frequency or antibiotic usage	10 AD (4 affected at 12 months of age) 10 Ctrl	Case-control from a prospective birth cohort study. Swabbed at months 2, 6 and 12 and alsoclinical assessed at 24 months of age	3	Epicentre MasterPure Kit, bead-beated, Invitrogen PureLink Genomic DNA Kit, 16S rRNA (V1-V3), 454- pyrosequencing (GS FLX)	SCORAD (month 24). Filaggrin genotype (no mutations)

This article is protected by copyright. All rights reserved.

	Chng ²⁵	Tape- strip	Antecubital fossae	Singa- pore	Singaporean Chinese population, non-flare AD > 18 years Mixed sex	Only restricted from using antibiotics	19 AD 15 Ctrl	Case-control	1	Qiagen EZ1 DNA Tissue Kit, Shotgun whole-metagenome sequencing	Filaggrin genotype (mutations in 2 AD, 1 Ctrl) TEWL, pH
	Gonzalez ²⁴	Swab	3 lesional (2 representative + the worst) and 1 contralateral or adjacent non- lesional site. Ctrl at 4 sites with AD predilection	USA, New York	Modsevere AD Healthy ctrl 3 months – 5 years Mixed sex	Excluded if overt infection, concurrent chronic skin disorders or use of antibiotics, systemic or top. corticosteroids or calcineurin inhibitors in the prior 2 wk	21 AD 14 Ctrl	RCT: 4 wk treatment of 1) top. corticosteroid (plus water baths) or 2) top. corticosteroid plus bleach baths	2	MoBio PowerSoil DNA Isolation kit 16S rRNA (V4), 35 PCR cycles, Illumina MiSeq	Hanifin and Rajka, EASI
	Shi ⁴	Swab	25 cm ² lesional and adjacent non- lesional skin on volar forearm	USA, Cali- fornia	Mod-severe AD Healthy ctrl 2-12, 13-17 and 18-62 years Mixed sex	Excluded if temp > 38.5 Prior sampling: 20 days: No phototherapy or immunosuppressant's 1 wk: No antibiotics, topicals, bleach baths 24 h: No creams/lotions, bathes.	128 AD 68 Ctrl	Case-control: Comparison among age groups	1	QIAamp DNA micro kit incl. bead beating. 16S rRNA (V1-V3) Illumina MiSeq	Rajka- Langeland
	Rodrigues Hoffmann 27	Swab	Axilla, groin, nasal, skin in- between digits	USA, Texas	Allergic dogs (6, 5 with AD) Healthy ctrl dogs	No syst. antibiotics 30 d prior to sampling. 3 got glucocorticoids or cyclosporine, 3 got allergen- specific immunotherapy	6 A 12 Ctrl	Case-control	1	MoBio Power Soil DNA isolation kit 16S rRNA (V1-V3), 454- pyrosequencing	
	Meason- Smith ²⁸	Swab	Axilla, groin, nasal, skin in- between digits, ear canal, lumbar	USA, Texas	Allergic dogs (8, 6 with AD) Healthy ctrl dogs 1.5-11 y Mixed sex	No syst. antibiotics or antifungals in the allergic dogs 1 month prior sampling (6 in the healthy). Top. allowed	8 A 10 Ctrl	Case-control	1	MoBio Power Soil DNA Isolation kit Internal Transcribed Spacer region (1F and 4R), Illumina MiSeq	
ıdies	Bradley ²⁹	Swab	Axilla, groin, pinna, mouth	USA, Pennsyl- vania	AD dogs with active lesions Healthy control dogs	4 used antibiotics within 45 d before. Targeted antimicrobial therapy in the interventional period	14 AD 16 Ctrl	Prospective cohort study: Flare-post therapy-post conclusion	3	Lysozyme, bead-beating, protein precipitation, Genomic DNA Isolation Kit (Life Tech) 16S rRNA (V1-V3) Illumina MiSeq	Clinical scoring, TEWL, pH
Animal stu	Kobayashi	Swab	Cheek	JapanUS A, Maryland and Minnesot a	Disintegrin and metalloproteinase 17 deficient mice in Sox9-tissue, incl. epidermidis (AD17 ^{fl/fl} Sox9- ^{Cre}).		A) 3 WT 3 AD17 B) 8 WT 8 AD17 C)12 AD17	 A) Tanner stage B) Antibiotics targeting <i>S. aureus</i> and <i>C. bovis</i> C) Crossover D) Characteristics 	A) 7 B) 3 C) 2 D) 1	Incubated in lysis buffer and lysozyme, (maybe bead-beated), Invitrogen PureLink Genomic DNA kit. 16S rRNA (V1-V3), 454- pyrosequencing	TEWL
	Kubica ³²	Punch biopsy (4 mm)	Ear	Belgium	Caspase-14 (involved in filaggrin degradation) knock out hairless mice		5 WT 4 KO	Animal study, case- control	1	QIAamp DNA Stool Mini Kit, 16S rRNA (V3-V5), 25 PCR cycles, 454-pyrosequencing	
	Schar- schmidt ³¹	Biopsy	Ear flexure	USA, Maryland	Ichthyotic model: Matripase (degrades profilaggrin) deficient Mice, 1% of WT levels (St14 ^{hypa/-})		3 WT + 3 St14 ^{hypo/-}	Animal study, case- control	1	DNAeasy kit (Qiagen), protocol for Gram-pos. bacteria (incl. bead-beating) 16S rRNA (V1-V8), 23 PCR cycles, Sanger	

Table 1: Characteristics of included published studies. Inflam.: Inflammatory. NA: Not available. Seb.: Sebaceous. NIH: National Institutes of Health. AD: Atopic dermatitis. Mod.: Moderate. Wk: Week. Top.: Topical. Prev.: Previous. PID: Primary Immunodeficiency. H: Hyper-IgE. W: Wiskott-Aldrich. D: DOCK8 deficiency. Syst.: Systemic. H: Hours. D: Days. EGFR: Epidermal Growth Factor Receptor. AD17: AD17^{fl/fl}Sox9-^{Cre} (AD17=ADAM17, a metallopeptidase involved in epidermal barrier integrity). WT: Wild Type. KO: Knock Out. St14^{hypor}: Mice with one null and one hypomorphic allele of "Suppressor of tumorigenicity 14", matriptase = a serine protease. Ctrl: Control. A: Allergic. AD: Atopic dermatitis. RCT: Randomised Controlled Trial. *S. aureus: Staphylococcus aureus. C. bovis: Corynebacterium bovis.* PCR: Polymerase Chain Reaction. rRNA: ribosomal RNA. ITS1: Internal Transcribed Spacer region 1. V3: Variable region 3 of the 16S rRNA gene. Gram-pos.: Gram-positive. SCORAD: SCORing Atopic Dermatitis. TEWL: TransEpidermal Water Loss. EASI: Eczema Area and Severity Index.

Study	Domain	Review authors	Support for judgement
		judgement	
Bianchi ²¹	Random sequence generation	Unclear	No information
	Allocation concealment	Unclear	No information
	Blinding of participants and personnel	Unclear	Patients not blinded, but no information on personnel.
	Blinding of outcome assessment	Unclear	No information
	Incomplete outcome data	Low risk	Reason given for one exclusion
	Selective reporting	Unclear	No study protocol available
	Other sources of bias	Unclear	Insufficient rationale: No sample size calculation. Object is given but no clear hypothesis. No specified setting
Gonzalez	Random sequence generation	Low risk	Shuffling envelopes
24	Allocation concealment	Low risk	Numbered containers
	Blinding of participants and personnel	Low risk	Participants (incl. parents) and clinical personnel blinded
	Blinding of outcome assessment	Low risk	Investigators, data analysts, and sequences blinded to treatment until unblinding was necessary for comparative data analysis after ended experiment
	Incomplete outcome data	Low risk	Reasons for missing outcome data and balanced across intervention groups
	Selective reporting	Unclear	No study protocol available
	Other sources of bias	Low risk	The study appears to be free of other sources of bias

(b): Newcast	le-Ottawa Scale for assessing (quality of case-control st	tudies	
Studies	Selection	Comparability	Exposure	Total
	Definition and selection of	of cases and controls	Blinding, same method, rel. abundances as	
	cases and controls		outcome, complete data	
	(max=4*)	(max=2*)	(max=4*)	(max=10*)
Dekio ¹⁷	***	**	**	7
Kong ¹⁹	***(*) (4/11 healthy children	**	***	9
	have fam. history of AD)			
Oh ¹⁵	***	**	***	8
Zhang ²⁰	*	*	***	5
Drago ²³	****	**	**	8
Kennedy 22	****	**	***	9
Chng ²⁵	***	**	***	8
Shi ⁴	****	**	***	9

(c): Newcastle	e-Ottawa	Scale for assessing quality	of cohort studies					
Studies Bourrain ¹⁶ Flores ²⁶	Select True a of AD outcon (max= ***	tion and/or somewhat representativ b, ascertainment of exposure, me at baseline =4*)	Comparability yes +/- treatment skin areas, or additional fractional fractiona fractional fractional fractional fractional fractional fractiona	s +/- treatment of matched skin areas, controlling for additional factors (max=2*) * * * * * * * * * * * * * * * *				0*)
(d): Adjusted	SYRCL	E's tool for assessing risk of	bias in animal s	tudies				
Type of bi	ias	Domain	Scharschmidt 31	Kubica	Rodrigue Hoffmann	es Meason- ²⁷ Smith ²⁸	Kobayashi ³³	Bradley 29
Selection bias		Group similarity (sex, age)	Low risk	Low risk	High risk	High risk	Low risk	High risk
Performance bi	as	Random housing	Unclear	Low risk	Low risk	Unclear	Unclear	Unclear
Detection bias		Blinding	High risk	Unclear	Unclear	Unclear	Unclear	High risk
Detection bias		Blinding of outcome assessor	Unclear	Unclear	Unclear	Unclear	Unclear	Unclear
Attrition bias		Incomplete outcome data	Unclear	Unclear	Low risk	Low risk	Unclear	Low risk
Reporting bias		Selective outcome reporting	Unclear	Unclear	Unclear	Unclear	Unclear	Unclear
Biases associate interventional s	ed with studies	Allocation					Unclear	Low risk
		Baseline characteristics					B) Unclear C) Low risk	Low risk

Table 2: Review authors scores of risk of bias of included studies using the Cochrane Collaboration's risk of bias tool (a), an adjusted Newcastle-Ottawa Scale for case-control studies (b) and cohort studies (c) where points (*) are assigned for no biases and an adjusted SYRCLE's tool for noninterventional (6 entries) and interventional (8 entries) animal studies (d).

Phylum	Family	Genus or	Bourrain ¹⁶ #	De-	Flores ²⁶	Kong ¹⁹	Oh 15 Antecub	Zhang ²⁰	Bianchi ²¹ m	Drago ²³	Kennedy 22	Chng ²⁵	Gonzalez ²⁴ Baseline	Shi ⁴
		species	D10	¹⁷ ¤	Pre-tr Post-tr	Antecub & popl	Volar forearm		D0	G AD	Antecub	C	Post-tr	C
			X I N	$\frac{C}{AD}$	U A Resp Non U+A U+A	СВЕР	C PID AD H W D	AD C M Mo S	D28 C E	U A	M2 U A M12	$\frac{C}{AD}$	C Tr+bl Tr-bl L N L N	AD L/N Ch Teen-Adu
Firmicutes	Staphylococca- ceae									33 32 33	50 7			
		Staphylococcus		75 54	17 33* 15 52	16 35 31 90 20	11 28* 7 35*47* 6 18* 7 11 8*					9 7	12 62 31 58 34 12 24*6* 24* 40	6 9 37/21*38/29*
	5	S. aureus	36 52/56*16 48 44 24 24 28 20		1 8	1 17 15 65* 6	0 10* 1 8		28 28 NA 28 (6.5x↑)*					0 1 24/13*20/13*
		S. capitis				2 2 6 1 3					3 0			
R		S. epidermidis			11 19	9 7 7 20* 8	5 13* 2 7*				27 4			1 4 9/4 11/9
		S. hominis				3 5 2 2 2								$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		S. haemolyticus					0 1* 0 1*							
		S. cohnii									19 1			
	Alicyclobacilla- ceae				5 4 6 4									
	Streptococca- ceae										5 24			
		Streptococcus		80 54	8765	15* 2 14*						1 3*	16 9 8 7 9 20 13 8 13 8	26 14 20/26* 10/11
		S. mitis										1 2*		
	Neisseriaceae	Neisseria												$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Veillonellaceae	Veillonella												2 2 1.5/2* 1/1
Proteo- bacteria	Rhodobactera- ceae									1 1 1				
	Moraxellaceae	Acinetobacter			2 1.2 2 1	1 0 3*							$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} 1 & 1 \\ 1/1 & 1/1 \end{array}$
	Xanthomonada-	Stenotropho-			7 1.5*									
	ceae	S. maltophilia		0*										
	Alcaligenaceae	Alcaligenes		0										
	Enterobacteria-	xylosoxidans Serratia		7			0 8* 3 0 0							
Acting	ceae	marcescens		0.0*			0 8* 3 0 0							
bacteria	Dietziaceae	Dietzia maris		80* 15						10.14.15	5 12			
	-ceae									18 14 15	5 13			
		Propioni- bacterium			11 8 11 5	6 1 12*	24 11 26 9 7					56 67		13 28 5/5 11/14
	This ar	ticle is protec	cted by copy	right.	All rights rese	rved.								

		P. acnes		75*										13	28
	Corynebacteria-			35						3 2 1	2 4			4/3	10/13
	ceae	Coryne-			4 3 8 3	9* 1 9*	9 17* 14 15 5					6		3	8
	Dermacocca-	bacterium					8 18 9 1/ 5					1		3/4*	8/11*
	ceae Actinomycetace	Rothia										0.5*		2	2
Bacte-	ae	Prevotella			1 2	1 0 1								2/2	1/1
roidetes		Trevoletta			1 2	1 0 1								2/2	2/2
Asco- mycota	Trichocomaceae	Aspergillus					1 4* 0 7*								
	Saccharomyce- tales	Candida					0 0.4* 0 0.3*								
		C. albicans						1 2 3 0							
	Davidiellaceae Cappodiales	Cladosporium Toxicoclado-						5 5 6 3							
	Cupitodiales	sporium irritans						2 2 1 0							
Basidio- mycota	Malasseziaceae											2 1*			
		Malassezia					96* 71 96* 67	69(all) 79							
		M. restricta					70 07	48 49 34 59							
		M. globosa						15 16 27 14				19 10*			
		M. dermatis										2 8*			
	Tremellaceae	Cryptococcus diffluens						2 1 3 1							
Shannon					A=6.0; U=6.3	3.4 2.8 2.7 0.7* 3.4	2.8 2.4 2.7 2.3 2.1* 2 8 2 7 2 9 2 8 2 7		$\begin{array}{ccc} 2 & 2 \\ 2 & 2 \end{array}$		NS	1.7	Improved with no		
(- S. aureus)					$\Delta A=0.08$	2.8 2.5 2.5 1.5* 2.8	No treatment effect in P at any site		22			1.4	between tr-groups. Inversely corr. to EASI		
SCORAD			Reduction at	36	$\Delta = -12.78\%$ sites	NA 21.8 42.1	0 22 6 11 28		10 12	32	Not				
			$(30.8\pm7.2 \text{ to})$ (20.0 ± 10.2)		had <i>iseverity</i>	18.1			8* 6*		relevant				
EASI													Improved with no differences between tr-groups		
Spearman							To SCORAD, inverse: Stenot.,					Inverse: P. acnes and			
							P. acnes, Neisseria, Streptococcus. Pos.: S. aureus					S. epidermidis. Dermacoccus and S. aureus			
TEWL (g/m²/hour)									D28: No change in C, 34% ↓			No diff			
Skin pH									in E			No diff			
5km pri			1					1		I		no un			

Table 3: Summary of relative abundance (in percent) of microorganisms found on skin, clinical and physiological outcomes, human studies. Taxonomic units with % relative abundance < 1 are not included in this table.

#: Percentage of total amount of samples dominated by S. aureus (vs. diversified microbiota)

¤: Percentage of individuals in the study population with a specific microorganism (in percent)

A L

epte

X: Xerotic, I: Inflammatory, N: Non-lesional, L: Lesional site. .D1: Day 1. M2: Month 2. AD: Atopic Dermatitis. Antecub: Antecubital Fossa. Popl: Popliteal region, C: Control, Tr: Treatment, U: Unaffected, A: Affected, Resp: Responders, B: Before, F: Flare, I: Intermittent (treatment), N: No (treatment). P: Post flare, NA: Not available, PID: Primary Immunodeficiency, H: Hyper-IgE, W: Wiskott-Aldrich, D: DOCK8 deficiency, M: Mild, Mo: Moderate, S: Severe, E: Emollient (group). Ch: Children, Teenagers-Adults, SCORAD: SCORing Atopic Dermatitis, EASI: Eczema Area and Severity Index, TEWL: TransEpidermal Water Loss, * Indicate statistical differences found in the original papers.

Phylum	Family	Genus or species	Meason-Smith ²⁸	Rodrigues		Kobayashi	33			Bradley ²⁹	Kubi-	Schar-
			$\frac{-}{A}$	27	Time (wk) after birth	Antibiotic treatmen	t Crosso	ver, AD1	7 Mechanism	AD	Ca	31
			and A, all sites	<u>C</u>	$\frac{WT}{AD17}$	AD17 $\frac{-AB}{+AB}$ WT $\frac{-AB}{+AB}$	-AB→+	AB +AB	B→-AB	Flare Post TR Followu		WT
			Ax G I N E L	Ax G I N	2 4 6 8 10 12 14	2 4 8 2 4 8	10	13 10	13	AxGP AxGP AxG	, <u>KO</u>	St14 ^{hypo/-}
Firmicutes												2 9*
		Other than			82 53 76 60 46 41 36	82 13 0 86 41 49	0 3	3 38	0			
		Streptococcus + Staphylococcus			83 15 10 3 1 0 7	94 35 48 92 50 48						
	Class: Bacilli	Suphylococcus									5	
											2*	
	Order: Bacillales										$\frac{2}{8}$	
	Bacillaceae	Bacillus		$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
	Staphylococcaceae										92 77*	
	Staphylococcaceae	Staphylococcus		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						3 12 4 6 11 6 4 11 6 33*43*45* 12 9 17 6 9 20	50 52	
		S. aureus		0 5 1 0	0 0 0 0 0 0 0 0	0 16 39 0 0 0	23	5 5	17	Across all skin sites:		
					0 12 8 49 45 50 25	012 000				10 7 5		
		S. lugdunensis								Across all skin sites:		
										Fibre: 20 Post TR: $18 P: 20$ 2 10 12		
		S. pseudintermedius								Across all skin sites:		
										Flare: 52 Post TR: 62 P: 52 82 68 68		
		S. lentus			3 5 2 2 0 0 0	0 1 0 0 0 0	0	4 3	1	02 00 00		
		Other than <i>aureus and</i>					0	2 6	3			
		lentus			1 2 4 0 0 1 0	0 0 0 0 4 0	Ŭ	2 0	5			
	Alicyclobacillaceae	Alicyclobacillus		$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
J	Streptococcaceae	Streptococcus			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1 5	2	3 10 4 8 7 4 4 5 3 2 3 4 5 6 5 10 5		0 6*
Proteobac-					4 16 3 3 8 3 3	3 4 0 3 14 9	0	12 16	0			97 75*
teria	Class: Beta-	Dominated by			1 5 2 1 0 0 0	3 19 2 3 6 5						35
	proteobacteria	Janthinobacterium										31
	Neisseriaceae	Conchiformibius								$\begin{bmatrix} 2 & 6 & 3 & 4 & 7 & 3 & 2 & 7 & 2 \\ 0 & 1 & 1 & 1 & 2 & 1 & 3 & 4 & 4 \end{bmatrix}$		
	Class: Gamma-	Dominated by										48
	Proteobacteria	pseudomonas								331 222 322		33
	Tasteurenaeeae									$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	Rhodobacteraceae	Rubellimicrobium		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
	Ralstoniaceae	Ralstonia		4 2 7 17 0 0* 0*0*								
	Sphingomonadaceae	Sphingomonas		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
	Xanthomonadaceae										1 3*	
		Stenotrophomonas									0	

							4*	
Actinobac-								2 13*
	Propionibacteriaceae	Propionibacterium				5 1 6 3 1 7 2 1 3		15
	Corynebacteriaceae	Coryonebacterium				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0
		C. bovis			0 0 0 0 0 0 0 0 50 59 0 0 0 74 15 7 13			
		C. mastitidis			0 0 0 0 0 0 0 0 0 9 1 0 0 0 0 1 1 0 0 51 63 15 0 0 0 0 7 1 0 0 0			
		Other than bovis, mast., jeikeium, tuberculostearicum			2 11 2 11 9 11 19 0 0 0 16 7 0 6 7 0 0 0 0 0 0 1 8 12 0 12 47			
Bacteroidetes					6 9 3 13 29 28 25 7 2 0 6 16 26 0 17 4 0 6 6 2 0 0 0 5 6 16 6 25 8			
	Porphyromonadacea e	Porphyromonas				7 8 6 5 8 7 9 10 6 3*3 1* 3 3 4 4 5 4		
	Flavobacteriaceae					$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 6*	
Tenericutes	Mycoplasmataceae	Mycoplasma		$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
Ascomycota	Pleosporaceae	Alternaria	30 28 22 33 23 32 20 20 26 30 11 22					
		Epicoccum	5 5 9 11 7 16 10 9 10 10 14 15					
	Davidiellaceae	Cladosporium	33 31 37 16 17 16 35 37 30 16 36 22					
	Saccharomycetales	Candida	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	Clavicipitaceae	Claviceps	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	Nectriaceae	Fusarium	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
Basidiomyco ta	Malasseziales	Malassezia	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
	Wallemiaceae	Wallemia	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	OTHER		# 2 4 5 0 7 4 5 1 2 5 12 2					
Shannon Diversity			All sites: $\frac{1.9}{1.7}$. Only diff in ear (C>A)	AGI: N: 6 2.9	2.3 1.3*0.8* 2 3.5 3.3 2.2 3 2.5 1.9 3 2.5	8 7 8 8 8 7.5 8.5 7.5 8 6*6 3* 7.5 7 7.5 7.5 6.5 7.5		
Chao1 richness				432 100 168* 40*				
Struc.				100 10				WT≠ KO
TEWL					5 6 8 NA 8 NA 9 7 19 NA 30 13*10 7*23*27*NA 34*NA 40* 7 12*NA 37 9 18	14 10 9 13 11 13 16 10 14 26 14 14 14 14 14 17 10 13		
Clinical score					NA 20 37 38 15* 5 43 NA 12*8*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Antimicro- bial activity							KO> WT	

Table 4: Summary of relative abundance (in percent) of microorganisms found on skin, clinical and physiological outcomes, animal studies. Taxonomic units with % relative abundance ≤ 1 are not included in this table. C: Control. A: Allergic. Ax: Axilla. G: Groin. I: In-between digits. N: Nasal. E: Ear Canal. L:lumbar. Wk: week. WT: Wild Type. AD: Atopic dermatitis. AD17: AD17^{fl/fl}Sox9-^{Cre}. AB: Antibiotics. EGFR: Epidermal Growth Factor Receptor. P: Pinna. KO: Knock Out. St14^{hypo/-}: Mice with one null and one hypomorphic allele of "Suppressor of tumorigenicity 14", matriptase = a serine protease. * Indicate statistical differences found in the original namer.